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Outline 



p  Differential cryptanalysis [Biham, Shamir, 1991] is one of 
the most powerful attacks on block ciphers 

p  Finding a good differential characteristic with high 
probability is the first step in the (related-key) differential 
attack  

 

Motivation 



p  Matsui’s Algorithm 
ü  Mitsuru Matsui, On correlation between the order of S-boxes and the 

strength of DES, Eurocrypt 1994. 
ü  Branch and Bound approach 
ü Original method only applicable in the single-key setting 

p Variants of Matsui’s Algorithm 
ü Alex Biryukov, Ivica Nikolic.: Search for related-key differential 

characteristics in DES-like ciphers.  FSE 2011 
ü Brach and Bound approach 
ü Applicable in the related-key setting, but only for linear key schedule 

algorithm 

p  Integer programming based method 

 

Existing methods (I) 



p  Integer programming based method 
ü  applicable both in single-key and related-key settings 

ü  can be used to obtain security bounds (bounds of the minimum 
number of active S-boxes) with respect to differential attack 

ü  can not be used to obtain good characteristic directly 

ü  not applicable to bit-oriented block ciphers such as PRESENT, 
SIMON, DES(L), etc.  

 

Existing methods (II) 

l  Nicky Mouha,  Qingju Wang,  Dawu Gu, Bart Preneel.  Differential and linear 
cryptanalysis using mixed-integer linear Programming.  Inscrypt 2011. 

l  Shengbao Wu, Mingsheng Wang. Security Evaluation against Differential Cryptanalysis 
for Block Cipher Structures, IACR ePrint 2011/551. 



p  Integer programming based method 
ü  applicable both in single-key and related-key settings 

ü  can be used to obtain security bounds (bounds of the minimum 
number of active S-boxes) with respect to differential attack 

ü  can be used to obtain good characteristics directly 

ü  applicable to bit-oriented block ciphers such as PRESENT, 
SIMON, DES(L), etc.  

 

Our method: mixed-integer programming based 



p  Mixed-integer linear programming (MILP), an example 
ü  Objective function 
ü  Feasible region: all solutions satisfy the constraints 

 

Mixed-integer programming: An example 



p  The main idea of our method 
ü  describe the differential behavior of a cipher “at bit-level” by a set 

of linear inequalities 
ü  try to find a characteristic with minimum number of active S-boxes 

p  Search for high probability characteristic à Extract a 
good solution from the feasible region of an MILP problem 

 

Our method: The main idea 

A good solution  
corresponds to  
a high probability 
characteristic 



p  Variables involved in our MILP model 
ü  for every S-box we introduce a new 0-1 variable (represented by 

a       ), such that 1 for active and 0 for otherwise 
ü  for every input and output bit-level difference of every operation 

we introduce a new 0-1 variable (represeted by a     ) 

 

Our method: Modeling technique 

* This toy cipher is taking from Lars R. 
Knudsen et al’s book:  The block 
cipher The Block Cipher Companion”. 



p  Objective function 
ü  Minimize the sum of the varaibles (represented by       ), that is, 

minimize the number of active S-boxes. 

p  Constraints 
ü  Linear inequalities in the variables represented by     . 

 

Our method: Modeling technique 



p  How to describe the constraints imposed (by different 
operations )  on  the  variables denoted by      and           
with linear inequalities ？ 

 

Our method: Constraints generation 

 	




p  Constraints imposed on the input and output differences 
by XOR   

 

p Constraints (where     is a dummy variable and all variables 
are 0-1) 

 

Our method: Constraints generation for XOR  

00,0 =→== cba
11,0 =→== cba
10,1 =→== cba
01,1 =→== cba

d

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≤++

≥

≥

≥

≥++

2

2

cba
cd
bd
ad

dcba

 eliminate the case of a=1, b=1 and c=1 

 eliminate the case of one and only 
one of a, b, and c is 1 



p  Constraints imposed on the input and output differences 
by an m×n S-box (not necessarily invertible)  
ü Let  x1, x2, …, xm be the input difference, and y1, y2, …, yn be the 

output difference 
ü Let  A be the variable indicating the activity of the S-box 

 
 

 

Our method: Constraints generation for S-box 

At least one of the input 
difference bit xi  must be 1 if 
A = 1.   

 A must be 1 (active), when 
anyone of the input difference 
xi  is 1. 
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p  However, this is too coarse to describe an specific S-box, 
and result in an feasible region contain many invalid 
differential patterns 

 
 

 

Our method: a more accurate constraints generation 

 too many Invalid 
differential patterns 



p Hence, we need the so called valid cutting-off inequalities to 
remove some impossible differential patterns of an specific 
S-box. 

 
 

 

 Our method: a more accurate constraints generation 

 too many Invalid 
differential patterns 



p  Two methods for generating valid 
cutting-off inequalities for an specific S-
box 

1.   Logical condition modeling 

2.   Convex hull computation 

 
 

 

Our method for constraints generation 



p  Logical condition modeling 
ü Assume x, y are 0-1 variables, how to describe the logical 

condition “ x must be 1 when y = 1” ？  
 
 

ü The differentials of some S-boxes has similar properties. 
For example, the PRESENT S-box. 

 
 

 

Method I 

0≥− yx



p  Logical condition modeling 
ü This conditional differential properties can be described by 
 

 
 

 

Method I 

Remove all differential patterns which do not satisfy the differential 
pattern: 1000à***0,     0001à***1,     ***1à0001,      ***0à0101 



p  Convex hull computation 
ü Convex hull of a set of points in Rn : the smallest convex set that 

contains these points. 
 

 
 

 

Method II 



p  Convex hull computation 
ü A convex hull can be represented by a set of linear inequalities 

 
p  Treat the set of all possible differential patterns of an S-box 

as a set of points in Rn .  For example, the PRESENT S-box:  
{(0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 1, 1), (0, 0, 0, 1, 0, 1, 1, 1),  
  (0, 0, 0, 1, 1, 0, 0, 1),  (0, 0, 0, 1, 1, 1, 0, 1), (0, 0, 1, 0, 0, 0, 1, 1), 
  (0, 0, 1, 0, 0, 1, 0, 1), (0, 0, 1, 0, 0, 1, 1, 0), (0, 0, 1, 0, 1, 0, 1, 0), 
  (0, 0, 1, 0, 1, 1, 0, 0),  (0, 0, 1, 0, 1, 1, 0, 1),  … } 

 
 
 

p   Then we can compute the linear inequalities representation
 of the set of differential patterns 

Method II 

Corresponds to the differential:  0010 à 1101 



Linear inequality description 
of the PRESENT S-box. 

Too many inequalities, which will 
make the MILP problem too 
difficult to be solved in practical 
time 



p  Convex hull computation 
ü Can we use less inequalities ？   Yes！ 
 

 
 

 

Method II 



p  Convex hull computation 
ü Can we use less inequalities ？   Yes！ 
 

 
 

 

Method II 



p   Automatic security evaluation with respect to single-key 
and related-key differential attacks. 
ü  obtain the lower bound of the number of active S-boxes of all 

characteristics 
ü  useful in the design of block ciphers 

 
p  Automatic search for single-key and related-key differential 

characteristics 
ü  obtain characteristics with high probability 
ü  useful in (related-key) differential attack, (related-key) boomerang 

attack, biclique attack … 
 

 
 

 

Applications 



p  obtain the lower bound of the number of active S-boxes of 
all characteristics. 
1.  Set the objective function to be the sum of all variables indicating the 

activities of the S-boxes; 
2.  Include the constraints imposed by the operations involved in the 

cipher; 
3.  Require that all variables are 0-1; 
4.  Solve the MILP model using the Gurobi optimizer , and the objective 

value of the optimized solution is a lower bound of the number of 
active S-boxes. 

 
 
 

 

Application I : Security evaluation 

http://www.gurobi.com 



p  lower bounds of the number of active S-boxes of the related-key 
characteristics of PRESENT-80 

 

 

There is no related-key characteristic for 12+12=24-round PRESENT-80 
with probability higher than ( 2-2)16 × ( 2-2)16 =2-64 

Application I : Security evaluation 



p  Such bounds are only valid for characteristics, 
not for differentials 

 

 

Warning ! 



p  obtain characteristics with high probability 
1.  Set the objective function to be the sum of all variables indicating the 

activities of the S-boxes; 
2.  Include the constraints imposed by the operations involved in the 

cipher; 
3.  Require that all variables are 0-1; 
4.  Solve the MILP model using the Gurobi optimizer, extract a feasible 

solution when the objective value is small enough; 
5.  Check whether the solution is a valid characteristic.  If it is invalid, 

add some valid cutting-off inequalities and go to step 4.  If it is valid, 
we now have a characteristic. 

 
 
 

 

Application II : Characteristic search  



p  Improved 15-round single-key differential characteristic and differential 
for SIMON48,  a lightweight block cipher designed by NSA. 

 

 

The probability of the above characteristic is 2-46; by considering the 
differential effect, the probability is 2-41.96, which is the best result published 
so far for SIMON48. 

Application II : Characteristic search  



Thanks! 
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